Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.005
Filtrar
1.
Artigo em Chinês | MEDLINE | ID: mdl-38563167

RESUMO

Objective:To study the characteristics of Mismatch negativity(MMN) in normal hearing patients of different ages, and to compare the MMN of normal hearing subjects at different ages to explore the differences in MMN between different ages. Methods:MMN test was performed on both ears using the classic Oddball mode. A frequency of 1 000 Hz(standard stimuli) and 2 000 Hz(deviant stimuli) was used to evoked the MMN. According to different age groups: the juvenile group(7-17 years old), the youth group(18-44 years old), the middle-aged group(45-59 years old), and the elderly group(60-75 years old), with 25 cases in each group. The MMN characteristics of normal hearing subjects in different age groups were analyzed statistically and the differences between groups were compared. All subjects underwent pure tone threshold test, tympanic reactance test and ABR test before MMN test. Results:MMN waveform could be elicited from both ears of 100 subjects. Among them, the average latency of the juvenile group was(159.70±20.34) ms while the average amplitude was(4.34±2.26) µV, For the youth group, the average latency was(166.01±28.67) ms and the average amplitude was(3.70±2.28) µV. Then in the middle-aged group, the average latency was(175.16±37.24) ms, meanwhile, the average amplitude was(2.69±0.84) µV. Finally, the elderly group has an average latency of(178.03±14.37) ms and an average amplitude of(2.11±0.70) µV. Therefore, there was no statistical difference in latency and amplitude between all groups(P>0.05), and there was no statistical difference in latency and amplitude between left and right ears among all subjects as a whole(P>0.05). However, when the left and right ears of all groups were compared, it was found that the latency between the left and right ears of the Juvenile group had statistical significance(P<0.05), and the amplitude difference was not statistically significant(P>0.05), while the latency and amplitude differences between the left and right ears of other groups had no statistical significance(P>0.05). There were also no significant differences in latency and amplitude between men and women(P>0.05). Conclusion:There was no statistically significant difference in the latency and amplitude of mismatched negative among normal hearing subjects of different ages, and no statistically significant difference in the MMN latency and amplitude between the left and right ears of subjects and between men and women. Therefore, the study inferred that the auditory cerebral cortex of subjects aged 7-75 years old maintained a stable state for a long time after maturity, and the latency and amplitude of mismatched negative waves were relatively stable. It is not affected by age, gender and ear side, and can stably reflect the auditory cortex function of the subjects. It has broad application prospects in clinical practice, and provides a reliable detection means for future research on the changes of the auditory cerebral cortex of patients, which is worthy of our further research and clinical promotion.


Assuntos
Córtex Auditivo , Audição , Masculino , Pessoa de Meia-Idade , Idoso , Adolescente , Humanos , Feminino , Criança , Adulto Jovem , Adulto , Audição/fisiologia , Orelha Média , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica
2.
PLoS One ; 19(4): e0298535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598472

RESUMO

Elephants have a unique auditory system that is larger than any other terrestrial mammal. To quantify the impact of larger middle ear (ME) structures, we measured 3D ossicular motion and ME sound transmission in cadaveric temporal bones from both African and Asian elephants in response to air-conducted (AC) tonal pressure stimuli presented in the ear canal (PEC). Results were compared to similar measurements in humans. Velocities of the umbo (VU) and stapes (VST) were measured using a 3D laser Doppler vibrometer in the 7-13,000 Hz frequency range, stapes velocity serving as a measure of energy entering the cochlea-a proxy for hearing sensitivity. Below the elephant ME resonance frequency of about 300 Hz, the magnitude of VU/PEC was an order of magnitude greater than in human, and the magnitude of VST/PEC was 5x greater. Phase of VST/PEC above ME resonance indicated that the group delay in elephant was approximately double that of human, which may be related to the unexpectedly high magnitudes at high frequencies. A boost in sound transmission across the incus long process and stapes near 9 kHz was also observed. We discuss factors that contribute to differences in sound transmission between these two large mammals.


Assuntos
Elefantes , Animais , Humanos , Orelha Média/fisiologia , Som , Estribo/fisiologia , Audição/fisiologia , Vibração
3.
J Speech Lang Hear Res ; 67(4): 1229-1242, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38563688

RESUMO

PURPOSE: Almost 40 years after its development, in this article, we reexamine the relevance and validity of the ubiquitously used Revised Speech Perception in Noise (R-SPiN) sentence corpus. The R-SPiN corpus includes "high-context" and "low-context" sentences and has been widely used in the field of hearing research to examine the benefit derived from semantic context across English-speaking listeners, but research investigating age differences has yielded somewhat inconsistent findings. We assess the appropriateness of the corpus for use today in different English-language cultures (i.e., British and American) as well as for older and younger adults. METHOD: Two hundred forty participants, including older (60-80 years) and younger (19-31 years) adult groups in the the United Kingdom and United States, completed a cloze task consisting of R-SPiN sentences with the final word removed. Cloze, as a measure of predictability, and entropy, as a measure of response uncertainty, were compared between culture and age groups. RESULTS: Most critically, of the 200 "high-context" stimuli, only around half were assessed as highly predictable for older adults (United Kingdom: 109; United States: 107); and fewer still, for younger adults (United Kingdom: 75; United States: 81). We also found dominant responses to these "high-context" stimuli varied between cultures, with U.S. responses being more likely to match the original R-SPiN target. CONCLUSIONS: Our findings highlight the issue of incomplete transferability of corpus items across English-language cultures as well as diminished equivalency for older and younger adults. By identifying relevant items for each population, this work could facilitate the interpretation of inconsistent findings in the literature, particularly relating to age effects.


Assuntos
Percepção da Fala , Humanos , Idoso , Ruído , Audição/fisiologia , Idioma , Semântica
4.
J Acoust Soc Am ; 155(4): 2724-2727, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656337

RESUMO

The auditory sensitivity of a small songbird, the red-cheeked cordon bleu, was measured using the standard methods of animal psychophysics. Hearing in cordon bleus is similar to other small passerines with best hearing in the frequency region from 2 to 4 kHz and sensitivity declining at the rate of about 10 dB/octave below 2 kHz and about 35 dB/octave as frequency increases from 4 to 9 kHz. While critical ratios are similar to other songbirds, the long-term average power spectrum of cordon bleu song falls above the frequency of best hearing in this species.


Assuntos
Estimulação Acústica , Limiar Auditivo , Audição , Aves Canoras , Vocalização Animal , Animais , Vocalização Animal/fisiologia , Audição/fisiologia , Aves Canoras/fisiologia , Masculino , Psicoacústica , Espectrografia do Som , Feminino
5.
Fa Yi Xue Za Zhi ; 40(1): 15-19, 2024 Feb 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38500456

RESUMO

OBJECTIVES: To study the application of CE-Chirp in the evaluation of hearing impairment in forensic medicine by testing the auditory brainstem response (ABR) in adults using CE-Chirp to analyze the relationship between the V-wave response threshold of CE-Chirp ABR test and the pure tone hearing threshold. METHODS: Subjects (aged 20-77 with a total of 100 ears) who underwent CE-Chirp ABR test in Changzhou De'an Hospital from January 2018 to June 2019 were selected to obtain the V-wave response threshold, and pure tone air conduction hearing threshold tests were conducted at 0.5, 1.0, 2.0 and 4.0 kHz, respectively, to obtain pure tone listening threshold. The differences and statistical differences between the average pure tone hearing threshold and V-wave response threshold were compared in different hearing levels and different age groups. The correlation, differences and statistical differences between the two tests at each frequency were analyzed for all subjects. The linear regression equation for estimating pure tone hearing threshold for all subjects CE-Chirp ABR V-wave response threshold was established, and the feasibility of the equation was tested. RESULTS: There was no statistical significance in the CE-Chirp ABR response threshold and pure tone hearing threshold difference between different hearing level groups and different age groups (P>0.05). There was a good correlation between adult CE-Chirp ABR V-wave response threshold and pure tone hearing threshold with statistical significance (P<0.05), and linear regression analysis showed a significant linear correlation between the two (P<0.05). CONCLUSIONS: The use of CE-Chirp ABR V-wave response threshold can be used to evaluate subjects' pure tone hearing threshold under certain conditions, and can be used as an audiological test method for forensic hearing impairment assessment.


Assuntos
Perda Auditiva , Audição , Adulto , Humanos , Estimulação Acústica/métodos , Limiar Auditivo/fisiologia , Audição/fisiologia , Perda Auditiva/diagnóstico , Audiometria de Tons Puros/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
6.
J Speech Lang Hear Res ; 67(4): 1268-1280, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38517271

RESUMO

PURPOSE: Infants prenatally exposed to opioids exhibit withdrawal symptomology that introduce physiological noise and can impact newborn hearing screening results. This study compared the referral rate and physiological noise interpreted by number of trials rejected due to artifact on initial newborn hearing screenings of infants with prenatal opioid exposure (POE) and infants with no opioid exposure (NOE). Furthermore, within the POE group, it examined the relationship of referral rates with severity of withdrawal symptomology, and with maternal and infant risk factors. METHOD: This study used a retrospective cohort design of electronic medical records from six delivery hospitals in South-Central Appalachia. Newborn hearing screenings were conducted using automated auditory brainstem response (ABR) for 334 infants with POE and 226 infants with NOE. Severity of withdrawal symptomology was measured using the Modified Finnegan Neonatal Abstinence Scoring Tool, which includes observation of behaviors that introduce physiological noise. RESULTS: There was no significant difference in newborn hearing screening referral rate between infants with POE and infants with NOE. Referral rate was not affected by maternal or infant risk factors. Infants with POE had statistically significant higher artifact (defined as rejected ABR sweeps) than infants with NOE. There was a strong positive correlation between Finnegan scores and artifact but not referral rates. Sensitivity and specificity analysis indicated artifact decreased substantially after Day 4 of life. CONCLUSIONS: Referral rates of infants with POE were similar to those of infants with NOE. Nevertheless, the withdrawal symptomology of infants with POE introduces physiological noise reflected as artifact on ABR, which can affect efficiency of newborn hearing screenings.


Assuntos
Analgésicos Opioides , Triagem Neonatal , Recém-Nascido , Lactente , Feminino , Gravidez , Humanos , Estudos Retrospectivos , Ruído , Audição/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia
7.
Curr Biol ; 34(8): 1605-1620.e5, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38492568

RESUMO

Sound elicits rapid movements of muscles in the face, ears, and eyes that protect the body from injury and trigger brain-wide internal state changes. Here, we performed quantitative facial videography from mice resting atop a piezoelectric force plate and observed that broadband sounds elicited rapid and stereotyped facial twitches. Facial motion energy (FME) adjacent to the whisker array was 30 dB more sensitive than the acoustic startle reflex and offered greater inter-trial and inter-animal reliability than sound-evoked pupil dilations or movement of other facial and body regions. FME tracked the low-frequency envelope of broadband sounds, providing a means to study behavioral discrimination of complex auditory stimuli, such as speech phonemes in noise. Approximately 25% of layer 5-6 units in the auditory cortex (ACtx) exhibited firing rate changes during facial movements. However, FME facilitation during ACtx photoinhibition indicated that sound-evoked facial movements were mediated by a midbrain pathway and modulated by descending corticofugal input. FME and auditory brainstem response (ABR) thresholds were closely aligned after noise-induced sensorineural hearing loss, yet FME growth slopes were disproportionately steep at spared frequencies, reflecting a central plasticity that matched commensurate changes in ABR wave 4. Sound-evoked facial movements were also hypersensitive in Ptchd1 knockout mice, highlighting the use of FME for identifying sensory hyper-reactivity phenotypes after adult-onset hyperacusis and inherited deficiencies in autism risk genes. These findings present a sensitive and integrative measure of hearing while also highlighting that even low-intensity broadband sounds can elicit a complex mixture of auditory, motor, and reafferent somatosensory neural activity.


Assuntos
Audição , Animais , Camundongos , Masculino , Audição/fisiologia , Som , Estimulação Acústica , Feminino , Córtex Auditivo/fisiologia , Camundongos Endogâmicos C57BL , Movimento , Potenciais Evocados Auditivos do Tronco Encefálico
8.
Biochem Biophys Res Commun ; 704: 149704, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430700

RESUMO

Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.


Assuntos
Cóclea , Sinapses , Animais , Camundongos , Sinapses/fisiologia , Hormônios Tireóideos , Gânglio Espiral da Cóclea , Audição/fisiologia , Camundongos Knockout
9.
PLoS One ; 19(2): e0297826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330068

RESUMO

Perception of sounds and speech involves structures in the auditory brainstem that rapidly process ongoing auditory stimuli. The role of these structures in speech processing can be investigated by measuring their electrical activity using scalp-mounted electrodes. However, typical analysis methods involve averaging neural responses to many short repetitive stimuli that bear little relevance to daily listening environments. Recently, subcortical responses to more ecologically relevant continuous speech were detected using linear encoding models. These methods estimate the temporal response function (TRF), which is a regression model that minimises the error between the measured neural signal and a predictor derived from the stimulus. Using predictors that model the highly non-linear peripheral auditory system may improve linear TRF estimation accuracy and peak detection. Here, we compare predictors from both simple and complex peripheral auditory models for estimating brainstem TRFs on electroencephalography (EEG) data from 24 participants listening to continuous speech. We also investigate the data length required for estimating subcortical TRFs, and find that around 12 minutes of data is sufficient for clear wave V peaks (>3 dB SNR) to be seen in nearly all participants. Interestingly, predictors derived from simple filterbank-based models of the peripheral auditory system yield TRF wave V peak SNRs that are not significantly different from those estimated using a complex model of the auditory nerve, provided that the nonlinear effects of adaptation in the auditory system are appropriately modelled. Crucially, computing predictors from these simpler models is more than 50 times faster compared to the complex model. This work paves the way for efficient modelling and detection of subcortical processing of continuous speech, which may lead to improved diagnosis metrics for hearing impairment and assistive hearing technology.


Assuntos
Percepção da Fala , Fala , Humanos , Percepção da Fala/fisiologia , Audição/fisiologia , Tronco Encefálico/fisiologia , Eletroencefalografia/métodos , Estimulação Acústica
10.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38395618

RESUMO

Pure-tone audiograms often poorly predict elderly humans' ability to communicate in everyday complex acoustic scenes. Binaural processing is crucial for discriminating sound sources in such complex acoustic scenes. The compromised perception of communication signals presented above hearing threshold has been linked to both peripheral and central age-related changes in the auditory system. Investigating young and old Mongolian gerbils of both sexes, an established model for human hearing, we demonstrate age-related supra-threshold deficits in binaural hearing using behavioral, electrophysiological, anatomical, and imaging methods. Binaural processing ability was measured as the binaural masking level difference (BMLD), an established measure in human psychophysics. We tested gerbils behaviorally with "virtual headphones," recorded single-unit responses in the auditory midbrain and evaluated gross midbrain and cortical responses using positron emission tomography (PET) imaging. Furthermore, we obtained additional measures of auditory function based on auditory brainstem responses, auditory-nerve synapse counts, and evidence for central inhibitory processing revealed by PET. BMLD deteriorates already in middle-aged animals having normal audiometric thresholds and is even worse in old animals with hearing loss. The magnitude of auditory brainstem response measures related to auditory-nerve function and binaural processing in the auditory brainstem also deteriorate. Furthermore, central GABAergic inhibition is affected by age. Because the number of synapses in the apical turn of the inner ear was not reduced in middle-aged animals, we conclude that peripheral synaptopathy contributes little to binaural processing deficits. Exploratory analyses suggest increased hearing thresholds, altered binaural processing in the brainstem and changed central GABAergic inhibition as potential contributors.


Assuntos
Surdez , Perda Auditiva , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Animais , Humanos , Gerbillinae , Audição/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo , Percepção Auditiva/fisiologia , Estimulação Acústica
11.
Hear Res ; 444: 108970, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367458

RESUMO

The tympanic middle ear is important for anuran hearing on land. However, many species have partly or entirely lost their tympanic apparatus. Previous studies have compared hearing sensitivities in species that possess and lack tympanic membranes capable of sound production and acoustic communication. However, little is known about how these hearing abilities are comparable to those of mutant species. Here, we compared the eardrum and middle ear anatomies of two sympatric sibling species from a noisy stream habitat, namely the "non-vocal" Hainan torrent frog (Amolops hainanensis) and the "vocal" little torrent frog (Amolops torrentis), the latter of which is capable of acoustic communication. Our results showed that the relative (to head size) eardrum diameter of A. hainanensis was smaller than that of A. torrentis, although the absolute size was not smaller. Unlike A. torrentis, the tympanic membrane area of A. hainanensis was not clearly differentiated from the surrounding skin. The middle ear, however, was well-developed in both species. We measured the auditory brainstem responses (ABRs) of A. hainanensis and compared the ABR thresholds and latencies to those previously obtained for A. torrentis. Our results suggested that these two species exhibited significant differences in hearing sensitivity. A. hainanensis (smaller relative eardrum, nonvocal) had higher ABR thresholds and longer initial response times than A. torrentis (larger relative eardrum, vocal) at lower frequencies. Neurophysiological responses from the brain were obtained for tone pips between 800 Hz and 7,000 Hz, with peak sensitivities found at 3,000 Hz (73 dB SPL) for A. hainanensis, and at 1,800 Hz (61 dB SPL) for A. torrentis. Our results suggest that the non-vocal A. hainanensis has lower hearing sensitivity than its vocal sister species (i.e., A. torrentis), which may be related to differences in tympanic or inner ear structure and morphology.


Assuntos
Orelha Média , Membrana Timpânica , Animais , Membrana Timpânica/fisiologia , Limiar Auditivo/fisiologia , Orelha Média/fisiologia , Audição/fisiologia , Anuros
12.
Artigo em Chinês | MEDLINE | ID: mdl-38297849

RESUMO

Objective:This study aims to analyze the threshold changes in distortion product otoacoustic emissions(DPOAE) and auditory brainstem response(ABR) in adult Otof-/- mice before and after gene therapy, evaluating its effectiveness and exploring methods for assessing hearing recovery post-treatment. Methods:At the age of 4 weeks, adult Otof-/- mice received an inner ear injection of a therapeutic agent containing intein-mediated recombination of the OTOF gene, delivered via dual AAV vectors through the round window membrane(RWM). Immunofluorescence staining assessed the proportion of inner ear hair cells with restored otoferlin expression and the number of synapses.Statistical analysis was performed to compare the DPOAE and ABR thresholds before and after the treatment. Results:AAV-PHP. eB demonstrates high transduction efficiency in inner ear hair cells. The therapeutic regimen corrected hearing loss in adult Otof-/- mice without impacting auditory function in wild-type mice. The changes in DPOAE and ABR thresholds after gene therapy are significantly correlated at 16 kHz. Post-treatment,a slight increase in DPOAE was observeds,followed by a recovery trend at 2 months post-treatment. Conclusion:Gene therapy significantly restored hearing in adult Otof-/- mice, though the surgical delivery may cause transient hearing damage. Precise and gentle surgical techniques are essential to maximize gene therapy's efficacy.


Assuntos
Orelha Interna , Perda Auditiva , Camundongos , Animais , Emissões Otoacústicas Espontâneas/fisiologia , Audição/fisiologia , Perda Auditiva/genética , Perda Auditiva/terapia , Terapia Genética , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Proteínas de Membrana
14.
Mar Pollut Bull ; 199: 115978, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217911

RESUMO

The detrimental effects of anthropogenic underwater noise on marine organisms have garnered significant attention among scientists. This review delves into the research concerning the repercussions of underwater noise on marine species, with specific emphasis on the physiological and molecular responses of marine biota. This review investigates the sensory mechanisms, hearing sensitivity, and reaction thresholds of diverse marine organisms, shedding light on their susceptibility to underwater noise disturbances. The physiological and molecular effects of anthropogenic underwater noise on marine biota include oxidative stress, energy homeostasis, metabolism, immune function, and respiration. Additionally, changes in the gene expression profile associated with oxidative stress, metabolism, and immunological response are among the responses reported for marine biota. These effects pose a threat to animal fitness and potentially affect their survival as individuals and populations.


Assuntos
Organismos Aquáticos , Ruído , Humanos , Animais , Organismos Aquáticos/fisiologia , Audição/fisiologia , Biota
15.
Ear Hear ; 45(3): 626-635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178314

RESUMO

OBJECTIVES: The auditory steady-state response (ASSR) enables hearing threshold estimation based on electroencephalography (EEG) recordings. The choice of stimulus type has an impact on both the detectability and the frequency specificity of the ASSR. Amplitude modulated pure tones provide the most frequency-specific ASSR, but responses to pure tones are weak. The ASSR can be enhanced by increasing the bandwidth of the stimulus, but this comes at the cost of a decrease in the frequency specificity of the measured response. The objective of the present study is to investigate the relationship between stimulus bandwidth and ASSR amplitude. DESIGN: The amplitude of ASSR was measured for five types of stimuli: 1 kHz pure tone and band-pass noise with 1/3, 1/2, 1, and 2 octave bandwidths centered at 1 kHz. All stimuli were amplitude modulated with a 40 Hz sinusoid. Responses to all stimulus types were measured at 30, 40, and 50 dB SL. ASSRs were measured concurrently using both conventional scalp-EEG and ear-EEG. RESULTS: Stimulus bandwidth and sound intensity were both found to have a significant effect on the ASSR amplitude for scalp- and ear-EEG recordings. In scalp-EEG ASSRs to all bandwidth stimuli were found to be significantly larger than ASSRs to pure tone at low sound intensity. At higher sound intensities, however, significantly larger responses were only obtained for 1- and 2-octave bandwidth stimuli. In ear-EEG, only the ASSR to 2 octave bandwidth stimulus was significantly larger than the ASSR to amplitude modulated pure tones. CONCLUSIONS: At low presentation levels, even small increases in stimulus bandwidth (1/3 and 1/2 octave) improve the detectability of ASSR in scalp-EEG with little or no impact on the frequency specificity. In comparison, a larger increase in stimulus bandwidth was needed to improve the ASSR detectability in the ear-EEG recordings.


Assuntos
Audição , Couro Cabeludo , Humanos , Estimulação Acústica , Limiar Auditivo/fisiologia , Audição/fisiologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia
16.
Hear Res ; 443: 108964, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277882

RESUMO

Data from non-human primates can help extend observations from non-primate species to humans. Here we report measurements on the auditory nerve of macaque monkeys in the context of a controversial topic important to human hearing. A range of techniques have been used to examine the claim, which is not generally accepted, that human frequency tuning is sharper than traditionally thought, and sharper than in commonly used animal models. Data from single auditory-nerve fibers occupy a pivotal position to examine this claim, but are not available for humans. A previous study reported sharper tuning in auditory-nerve fibers of macaque relative to the cat. A limitation of these and other single-fiber data is that frequency selectivity was measured with tonal threshold-tuning curves, which do not directly assess spectral filtering and whose shape is sharpened by cochlear nonlinearity. Our aim was to measure spectral filtering with wideband suprathreshold stimuli in the macaque auditory nerve. We obtained responses of single nerve fibers of anesthetized macaque monkeys and cats to a suprathreshold, wideband, multicomponent stimulus designed to allow characterization of spectral filtering at any cochlear locus. Quantitatively the differences between the two species are smaller than in previous studies, but consistent with these studies the filters obtained show a trend of sharper tuning in macaque, relative to the cat, for fibers in the basal half of the cochlea. We also examined differences in group delay measured on the phase data near the characteristic frequency versus in the low-frequency tail. The phase data are consistent with the interpretation of sharper frequency tuning in monkey in the basal half of the cochlea. We conclude that use of suprathreshold, wide-band stimuli supports the interpretation of sharper frequency selectivity in macaque nerve fibers relative to the cat, although the difference is less marked than apparent from the assessment with tonal threshold-based data.


Assuntos
Cóclea , Nervo Coclear , Animais , Haplorrinos , Nervo Coclear/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Macaca , Limiar Auditivo/fisiologia , Estimulação Acústica
17.
J Exp Biol ; 227(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197244

RESUMO

Mechanoreceptors in hearing organs transduce sound-induced mechanical responses into neuronal signals, which are further processed and forwarded to the brain along a chain of neurons in the auditory pathway. Bushcrickets (katydids) have their ears in the front leg tibia, and the first synaptic integration of sound-induced neuronal signals takes place in the primary auditory neuropil of the prothoracic ganglion. By combining intracellular recordings of the receptor activity in the ear, extracellular multichannel array recordings on top of the prothoracic ganglion and hook electrode recordings at the neck connective, we mapped the timing of neuronal responses to tonal sound stimuli along the auditory pathway from the ears towards the brain. The use of the multielectrode array allows the observation of spatio-temporal patterns of neuronal responses within the prothoracic ganglion. By eliminating the sensory input from one ear, we investigated the impact of contralateral projecting interneurons in the prothoracic ganglion and added to previous research on the functional importance of contralateral inhibition for binaural processing. Furthermore, our data analysis demonstrates changes in the signal integration processes at the synaptic level indicated by a long-lasting increase in the local field potential amplitude. We hypothesize that this persistent increase of the local field potential amplitude is important for the processing of complex signals, such as the conspecific song.


Assuntos
Audição , Ortópteros , Animais , Audição/fisiologia , Neurônios/fisiologia , Vias Auditivas/fisiologia , Interneurônios/fisiologia , Estimulação Acústica
18.
Sci Rep ; 14(1): 2469, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291126

RESUMO

Sound localization is essential to perceive the surrounding world and to interact with objects. This ability can be learned across time, and multisensory and motor cues play a crucial role in the learning process. A recent study demonstrated that when training localization skills, reaching to the sound source to determine its position reduced localization errors faster and to a greater extent as compared to just naming sources' positions, despite the fact that in both tasks, participants received the same feedback about the correct position of sound sources in case of wrong response. However, it remains to establish which features have made reaching to sound more effective as compared to naming. In the present study, we introduced a further condition in which the hand is the effector providing the response, but without it reaching toward the space occupied by the target source: the pointing condition. We tested three groups of participants (naming, pointing, and reaching groups) each while performing a sound localization task in normal and altered listening situations (i.e. mild-moderate unilateral hearing loss) simulated through auditory virtual reality technology. The experiment comprised four blocks: during the first and the last block, participants were tested in normal listening condition, while during the second and the third in altered listening condition. We measured their performance, their subjective judgments (e.g. effort), and their head-related behavior (through kinematic tracking). First, people's performance decreased when exposed to asymmetrical mild-moderate hearing impairment, more specifically on the ipsilateral side and for the pointing group. Second, we documented that all groups decreased their localization errors across altered listening blocks, but the extent of this reduction was higher for reaching and pointing as compared to the naming group. Crucially, the reaching group leads to a greater error reduction for the side where the listening alteration was applied. Furthermore, we documented that, across blocks, reaching and pointing groups increased the implementation of head motor behavior during the task (i.e., they increased approaching head movements toward the space of the sound) more than naming. Third, while performance in the unaltered blocks (first and last) was comparable, only the reaching group continued to exhibit a head behavior similar to those developed during the altered blocks (second and third), corroborating the previous observed relationship between the reaching to sounds task and head movements. In conclusion, this study further demonstrated the effectiveness of reaching to sounds as compared to pointing and naming in the learning processes. This effect could be related both to the process of implementing goal-directed motor actions and to the role of reaching actions in fostering the implementation of head-related motor strategies.


Assuntos
Perda Auditiva , Localização de Som , Realidade Virtual , Humanos , Audição/fisiologia , Localização de Som/fisiologia , Testes Auditivos
19.
Q J Exp Psychol (Hove) ; 77(3): 478-491, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37140126

RESUMO

The COVID-19 pandemic made face masks part of daily life. While masks protect against the virus, it is important to understand the impact masks have on listeners' recognition of spoken words. We examined spoken word recognition under three different mask conditions (no mask; cloth mask; Kn95 mask) and in both easy (low density, high phonotactic probability) and hard (high density, low phonotactic probability) words in a lexical decision task. In Experiment 1, participants heard all words and nonwords under all three mask conditions. In Experiment 2, participants heard each word and nonword only once under one of the mask conditions. The reaction time and accuracy results were consistent between Experiments 1 and 2. The pattern of results was such that the no mask condition produced the fastest and most accurate responses followed by the Kn95 mask condition and the cloth mask condition, respectively. Furthermore, there was a trend towards a speed-accuracy trade-off with Word Type. Easy words produced faster but less accurate responses relative to hard words. The finding that cloth masks had a more detrimental impact on spoken word recognition than Kn95 masks is consistent with previous research, and the current results further demonstrate that this effect extends to individual word recognition tasks with only audio presentation.


Assuntos
Máscaras , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Pandemias , Audição/fisiologia , Reconhecimento Psicológico
20.
Artigo em Inglês | MEDLINE | ID: mdl-37280367

RESUMO

Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.


Assuntos
Audição , Ruído , Animais , Limiar Auditivo/fisiologia , Audição/fisiologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...